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Prospects for a lossless negative dielectric constant material for optical devices are studied. Simulations
show that, with sufficient gain, a mixture of two semiconductor quantum dots can produce an isotropic
effective dielectric constant that is lossless and negative. Both analytical homogenizations based on the work
of Maxwell Garnett and frequency-dependent dielectric constants from inversion of numerical computations of
scattered fields are used to establish the dielectric constants of a mixture of gain and loss dots. Over length
scales where homogenization is meaningful, this material could be used to achieve lossless “metal-insulator”
optical waveguides and hence a small optical mode volume.
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Achieving a negative dielectric constant at a frequency
where the loss goes to zero, i.e., ���0�=����0�+ i����0� with
����0�=0, is of fundamental importance in small-scale op-
tics, which has come to be known as nanophotonics. A
plasmon-polariton surface wave exists at a metal-insulator
interface because of the negative dielectric constant for a
mode with magnetic field parallel to the interface.1,2 With
two interacting surfaces, a metal-insulator-metal waveguide
mode exists, and this propagates for arbitrarily small gaps.
As the gap reduces, the wavelength reduces for a fixed free
space wavelength. It is thus possible, in principle, to shrink
the size of optical components using such mechanisms. Un-
fortunately, the loss increases as the waveguide-mode wave-
length reduces, as measured per unit length.1 Means to offset
this loss would be of benefit in achieving small mode vol-
umes and hence high-density optical elements and circuits.

Resonant states in semiconductor quantum wells provide
a means of achieving a negative dielectric constant, provided
that the dipole strength and oscillator density are adequate to
offset the background,3,4 as well as gain through optical or
electrical pumping. We study a quantum dot �QD� mixture
using both analytical and numerical homogenization meth-
ods and provide an estimate of the pumping energy to
achieve a lossless negative dielectric constant at a single fre-
quency.

Colloidal fabrication approaches that have been devel-
oped �for CdSe,5,6 for example� have resulted in better than
5% variation in size.7 Models typically employ an effective-
mass approximation where the structure is assumed large
relative to the crystal lattice dimension. In the case of a
spherical QD under the strong confinement approximation,
the wave function can be written as the product of the con-
fined electron and hole functions, making an analytical solu-
tion possible, and the energies become the sum of the single-
particle energies.8,9 This simple model is assumed.

For a spherical potential well with infinite barriers at
r=R, we assume the approximate exciton energy8,9

� = �g +
�2

2mex
knl

2 −
1.8e2

4����0R
, �1�

where �g is the intrinsic semiconductor band gap energy, the
second term describes the kinetic energy of the exciton, and

the third term gives the Coulomb potential of the electron
and hole. Here it is assumed that the QD is in a background
material of matched dielectric constant ��, so there is no
surface polarization screening charge; this is accounted
for, approximately, in an homogenization calculation. In
Eq. �1�, �0 is the free space permittivity, �=h / �2��, with h
being Planck’s constant, and e is the electron charge.
The exciton reduced mass is given by mex

−1=me
�−1+mh

�−1, with
me

� being the effective mass of the electron and mh
� the effec-

tive mass of the hole, and as me
��mh

�, a physical picture of a
relatively immobile hole at the center of the QD applies. The
knl are roots of jl�kR�=0 with jl being the spherical Bessel
function of integer order l. The ground exciton state
�l=0, n=1� gives k10=� /R in Eq. �1�.

As the QD dimension is small relative to the wavelength
of light, the Hamiltonian describing the interaction between
the light field and the QD can be represented using the
electric-dipole approximation,10 which leads to a polarization
and hence the QD dielectric constant �QD. A density-matrix
approach is used to determine the electric-dipole moment
and hence �QD.11

Consider the time-dependent wave function ���t��
=�nCn�t��un�, where the normalized ���t�� gives �n�Cn�t��2
=1. Defining a density operator 	�t�= ���t�����t��, the den-
sity matrix in the orthonormal set un is 	mn�t�= �um�	�t��un�
=Cn

��t�Cm�t� with 	mn=	nm
� .10 The probability of the system

being in state n is then 	nn averaged over a sufficient set of
configurations, which is assumed. The equation of motion for
the density matrix,10 with phenomenological damping,11 is

d	nm

dt
=

− i

�
�H,	�nm − 
nm�	nm − 	nm

�0�� , �2�

with commutator �A ,B�=AB−BA, 	nm
�0� the steady-state value

�prior to application of the electric field E�t��, and Hamil-
tonian H=H0+H�t� with H�t� being the perturbation due to
E�t�.

The interaction Hamiltonian is H�t�=−� ·E�t�, and
for the exciton, the dipole moment operator becomes
�=e�rh−re�. The solution of Eq. �2�, in the frequency do-
main with E�t�=E exp�−i�t�, leads to a linear polarization
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P���=N������=�0��1����E��� with oscillator density N
and with the Cartesian components of the susceptibility ma-
trix given by11

�ab
�1���� =

N
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�
nm
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�0��
�mn

a �nm
b

��nm − �� − i
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. �3�

Noting that �mn=−�nm and 
nm=
mn, defining Pq=��1�Eq,
and assuming a ground state �g�,

��1���� =
N

3��0
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 , �4�

where the factor of 1/3 accounts for the average polarization
mismatch. The oscillator strength is fng
=2mex�ng��ng�2 / �3�e2� and the Thomas-Reiche-Kuhn sum
rule holds, giving �nfng=1.12 Consequently, Eq. �4�, under
the assumption that ���ng, leads to a QD susceptibility

�QD��� =
Ne2

�0mex
�

n

fng	 �	gg
�0� − 	ee

�0��
�ng

2 − �2 − i2�
ng

 . �5�

Setting N=8 /V �where V is the QD volume� to account for
degeneracy,5,13 mex�me

�, �	gg
�0�−	ee

�0��=2	gg
�0�−1 �assuming a

single exciton level�, and with �=1+�, Eq. �5� leads to

�QD = �� +
8e2

V�0me
�	 �2	gg

�0� − 1�
�ex

2 − �2 − i2�


 . �6�

For loss and gain, 
�0, and 	gg
�0��0.5 provides a lossy reso-

nance �absorption� and 	gg
�0��0.5 gain. Neglecting thermally

excited electrons, 	gg
�0�=1 for the lossy resonance and

	gg
�0�=0 for the gain resonance. We assume spherical QDs.

The homogenized dielectric constant ���� for an en-
semble of QDs having sufficiently low density �fill fraction�
and dielectric constant can be described by the dielectric
theory of Maxwell Garnett �MG�.14–17 For two quantum dot
species, this becomes

���� − �bg���
���� + 2�bg���

= x1
�QD1��� − �bg���

�QD1��� + 2�bg���

+ x2
�QD2��� − �bg���

�QD2��� + 2�bg���

= Q , �7�

where xj is the volume fraction of the jth QD species and �bg
is the background dielectric constant. Equation �7� provides
an approximate means to account for polarization charge
from a mismatch between the QD and background dielectric
constant. Solving Eq. �7� for � gives

� =
�bg�1 + 2Q�

1 − Q
. �8�

We compare the MG results with a more rigorous homog-
enization approach based on a numerical calculation of scat-
tering �S� parameter data, which we used for effective param-
eter extraction.18 The numerical calculation of the S

parameters was done using a full-wave vector finite element
solver �HFSS�. The QDs were represented by dielectric
spheres with a homogeneous dielectric constant having a fre-
quency dependence given by Eq. �6�. We used periodic trans-
verse boundary conditions to define a cell, resulting in two-
dimensional periodicity normal to the incident-field direction
�electric walls normal and magnetic walls parallel to the in-
cident electric field, under the assumption of a quasistatic
local field�. The cell dimensions were determined from the
QD size and volume fill fraction and, in our calculations, the
largest cell dimension was less than �min /53 with �min the
smallest free space wavelength ��=2�c /�, c being the speed
of light in free space� over the frequency range we studied,
making homogenization meaningful �even with the possible
range of dielectric constants in the mixture�. In the parameter
extraction procedure, the effective-medium parameters were
determined from the scattered fields parameterized by S pa-
rameters using

� = �
c

�d
�1 − S11�2 − S21

2

�1 + S11�2 − S21
2 cos−1� 1

2S21
�1 − �S11

2 − S21
2 ��� ,

�9�

where S11 describes the electric field reflection and S21 the
transmission through the slab, and d is the slab thickness. By
studying the frequency-dependent solution and maintaining
continuity in �, the correct sign and branch of the arccosine
function in Eq. �9� can be achieved. The convergence in �
was then studied as a function of the number of cells �in
thickness� in order to arrive at the effective dielectric con-
stant.

We considered CdSe QDs, and assumed that Eq. �1� gives
the approximate exciton energy. Equation �6� was used to
find the QD dielectric constant and then Eq. �8� to determine
the homogenized dielectric constant for the QD mixture in a
background. An ensemble of colloidally fabricated CdSe
QDs have produced linewidths of �
=0.04 eV at room tem-
perature and �
=0.02 eV at 10 K, limited by the variation
in dimension of the QDs.7 We used me

� /m0=0.1, where m0 is
the electron rest mass, �g=1.74 eV, and ��=10.2.

Figure 1 gives �QD for several �
 values. Notice that
�
�0.02 is necessary to achieve a negative dielectric con-
stant. The dependency of �QD on R is shown in Fig. 2. It is
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FIG. 1. Dielectric constant for a QD with R=2 nm and
�
=0.01 �squares�, 0.02 �no symbol�, and 0.04 eV �circles�.
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evident that QDs with higher exciton energies and smaller R
values offer more negative dielectric constants. This is be-
cause, within the assumption of an infinite barrier, the oscil-
lator strength is inversely proportional to the volume of the
QD. Consider now a mixture of QDs, described by Eq. �6�,
in a background �bg with an effective dielectric constant
given by Eq. �8�. Figure 3�a� shows the influence of variation
in fill fraction x1 �with x2=0� and background dielectric con-
stant �bg. Notice that the larger �bg produces a more negative
�. As one would expect, increasing x1 produces a more nega-

tive �. A rather optimistic �
=0.01 eV has been assumed. In
Fig. 3�b�, each of the plots of the effective dielectric constant
from the upper panel that were obtained using the MG mix-
ing rule is compared with the effective dielectric constant
obtained using the full-wave parameter extraction procedure
described earlier, with one QD per cell. In all the plots shown
in Fig. 3�b�, convergence of the effective dielectric constant
was achieved using a slab of at most three QD cells �in
thickness�. It is evident from a comparison between the plots
in Fig. 3�b� that, for the chosen parameters, the results of the
MG mixing rule coincide with the results from the full-wave
extraction procedure.

We require ��=0 at some frequency in order to achieve
lossless surface plasmons and hence lossless waveguide
modes. To investigate prospects for obtaining isotropic ma-
terial, consider distributions of two types of QDs, one pro-
viding an absorptive resonance and the other gain. The gain
resonance is assumed to be at ��ex+��, where ��ex is the
loss resonance and �� is the energy difference achieved
through a small reduction in dot size, which should satisfy
����
. The gain is at the higher frequency, a condition that
appears to be necessary to achieve a lossless plasmon oper-
ating condition.19 Equal lossy and gain QD fill fractions are
assumed, i.e., x1=x2. Figure 4�a� gives example results indi-
cating that the conditions ��=0 and ���−1 can be achieved
with moderate to high fill fractions and a sufficiently small
linewidth of �
=0.007 eV. In a manner similar to that of
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FIG. 2. Dielectric constant for a QD with varying R and
�
=0.02 eV. R=1.5 �no symbol�, 2 �circles�, and 4 nm �squares�.
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FIG. 3. �a� Effective dielectric constant for R=2 nm QDs with
�
=0.01 eV and �i� �bg=3, x1=0.4 �no symbol� and x1=0.2
�circles� and �ii� �bg=1 and x1=0.4 �squares�. �b� Comparison of
each of the plots in �a� that were obtained using the Maxwell Gar-
nett mixing rule with results obtained via a full-wave effective-
medium parameter extraction procedure.
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FIG. 4. �a� Effective dielectric constant for R�2 nm QDs with
�bg=10 and ��=0.06 eV with x1=x2=0.2 �no symbols� and x1

=x2=0.1 �circles� assuming �
=0.007 eV. The gain is at the
higher frequency. �b� Comparison of each of the plots in �a� that
were obtained using the Maxwell Garnett mixing rule with those
from a full-wave effective-medium parameter extraction procedure.
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Fig. 3, Fig. 4�b� shows a comparison between each of the
plots of the effective dielectric constant in Fig. 4�a� obtained
using the MG mixing rule and that obtained via the full-wave
extraction procedure. In the electromagnetic simulation that
was used for the extraction procedure, each cell was com-
posed of four QDs with an absorptive resonance and four
QDs with a gain resonance. Again, the validity of the param-
eters that were extracted was ascertained by their conver-
gence with increasing number of cells �in thickness�. While
the effective dielectric constant for the lower filling factor
�x1=x2=0.1� converged rapidly to values that are very close
to those obtained by the MG mixing rule, the effective di-
electric constant for the higher filling factor �x1=x2=0.2� de-
manded four cells to achieve convergence and converged to
values that differ, to some extent, from the corresponding
MG mixing rule values. The difference between the results
obtained via the MG mixing rule and those obtained via the
full-wave extraction procedure is due to the large filling fac-
tor �xtotal=x1+x2=0.4� and the high contrast between the di-
electric constant of the QDs and the background dielectric
constant. When the effective �� is minimal, in the middle of
the plots, the contrast between both QDs and the background
is high, leading to some difference between the MG mixing
results and those obtained from the full-wave extraction pro-
cedure. Similar results can be obtained with a larger line-
width ��
� by increasing the filling factor.

Consider the �optical� pumping requirements to achieve
the conditions ���−1 and ��=0. Assume a QD excited-state
lifetime of 10 ns �Ref. 20�, which is long compared to avail-
able pump signals. Note that this lifetime can be substan-
tially longer than the inverse of the linewidth �and the value
�2
�−1 for an ensemble� under the assumption that the line-
width is limited by variation in QD size. Denote the pulse
pumping rate as Rp photons/s and the pulse duration as Tp,
and consider a pump volume Vp that has appropriate physical
and optical characteristics. We assume fast pulse pumping
where interlacing of the pumping and signal pulses allows
the use of a two-level system with a high pumping pulse
absorption rate. Thus, the pumping photon energy can be
determined from the first energy level of the exciton. For

each pump pulse, we require that all 8VpNQD excitons
be lifted to the pumping energy level �including the factor
of 8 for degeneracy�, resulting in RpTp�8VpNQD.
With R=2 nm and x2=0.2, the QD concentration is
NQD�61018 cm−3. This results in RpTp /Vp=4.8
1019 photons / �pulse cm3�. With a photon energy ��
=2.55 eV, we arrive at a rather substantial pump energy of
20 J /cm3 per cycle. Small pump volumes are clearly neces-
sary �1 mm3 or smaller�. To avoid ablation, the beam area
could be increased while keeping the pump volume constant.
Our analysis assumes that isolated QDs can be pumped, but
the relatively high fill fraction and high pump rates could
introduce electrical �Auger� interaction between dots that
may present practical limitations.21

This study suggests that achieving a lossless isotropic
metal at a single frequency is feasible. With sufficient oscil-
lator strengths, it should be possible to reach a lossless fre-
quency where the real part of the dielectric constant is nega-
tive �and less than −1�. A comparison of the effective
dielectric constant obtained via the MG mixing rule with the
effective dielectric constant obtained from a full-wave pa-
rameter extraction procedure suggests that, while the MG
mixing rule can give a good qualitative approximation to
behavior of the QD mixture, numerical studies of the homog-
enized dielectric constant would be an appropriate prelude to
experimental pursuits. The materials, in particular the back-
ground material, will be driven by the requirements for a
negative dielectric constant from the mixture and thermal
stability during optical pumping.
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